|
prof., dr. habil. Bronislovas Kaulakys
vyriausiasis mokslo darbuotojas
Kab. Saulėtekio al. 3, A406 kab.
Tel. (8 5) 223 4648
El. p.
http://www.itpa.lt/kaulakys/
- B. P. Kaulakys, L. P. Presnyakov, and P. D. Serapinas, On
the possibility of studying autoionization states of negative ions in
terms of the broadening and displacement of the Rydberg series of
neutral atoms, Pis'ma Zh. Eksp. Teor. Fiz. 30 (1), p. 60-63 (1979) [Engl. tr.: JETP Lett. 30 (1), p. 53-55 (1980)]; PDF.
- B. Kaulakys, Relation between the broadening of Rydberg levels and resonances in the scattering of slow electrons by atoms, Opt. Spectrosc. 48 (6), p. 574 (1980); PDF.
- B. Kaulakys, Position and width of the resonance in the electron-potassium scattering from self-broadening of Rydberg states, J. Phys. B: At. Mol. Phys. 15 (19), p. L719-L722 (1982); PDF.
- B. Kaulakys, Broadening and shift of Rydberg levels by elastic collisions with rare-gas atoms, J. Phys. B: At. Mol. Phys. 17 (22), p. 4485-4497 (1984); PDF.
- B. Kaulakys, Analytical expressions for cross sections of Rydberg-neutral inelastic collisions, J. Phys. B: At. Mol. Phys. 18 (6), p. L167-L170 (1985); PDF.
- B. P. Kaulakys, Free electron model for inelastic collisions between neutral atomic particles and Rydberg atoms, Zh. Eksp. Teor. Fiz. 91 (2), p. 391-403 (1986) [Engl. tr.: Sov. Phys.- JETP, 64 (2), p. 229-235 (1986)]; PDF.
- B. Kaulakys and A. Cižiunas, A theoretical determination of the diffusion-like ionisation time of Rydberg atoms, J. Phys. B: At. Mol. Phys. 20 (5), p. 1031-1038 (1987); PDF.
- B. Kaulakys and V. Švedas, Collisional ionisation of high-Rydberg atoms. Diffusive mechanism, J. Phys. B: At. Mol. Phys. 20 (17), p. L565-L570 (1987); PDF.
- V. Gontis and B. Kaulakys, Stochastic dynamics of hydrogenic atoms in the microwave field: modelling by maps and quantum description, J. Phys. B: At. Mol. Phys. 20 (19), p. 5051-5064 (1987); PDF.
- B. P. Kaulakis, Diffusion ionisation of Rydberg atoms due to black-body radiation, Pis'ma Zh. Eksp. Teor. Fiz. 47 (6), p. 300-302 (1988) [Engl. tr.: JETP Lett. 47 (6), p. 360-362 (1988)]; PDF.
- B. Kaulakys, Quasiclassical dipole matrix elements for high atomic states and stochastic dynamics of hydrogen atoms in microwave fields, J. Phys.B: At. Mol. Opt. Phys. 24 (3), p. 571-585 (1991); PDF.
- B. Kaulakys ,Free electron model for collisional angular momentum mixing of high Rydberg atoms, J. Phys. B: At. Mol. Opt. Phys. 24 (5), p. L127-L132 (1991); PDF.
- B. Kaulakys, V. Gontis, G. Hermann, and A. Scharmann, Scaling relations for the hydrogen atom in a harmonic field: classical chaos and quantum suppression of diffusion, Phys. Letters A 159 (4,5), p. 261-265 (1991); PDF.
- B. Kaulakys, Dependence of collisional broadening and shift of Rydberg levels on the angular momentum of the state, J. Phys.B: At. Mol. Opt. Phys. 25 (17), p. L407 (1992); PDF.
- G. Hermann, B. Kaulakys, and T.Udem, Theoretical approach for collisional depolarization of Rydberg atoms, Z Phys. D 28, p. 119-1222 (1993); PDF.
- B. Kaulakys and G. Vektaris, Transition to nonchaotic behaviour in a Brownian-type motion, Phys. Rev. E, 52 (2), p. 2091-2094 (1995); e-Print chao-dyn/9504009; PDF.
- B. Kaulakys, Consistent analytical approach for the quasi-classical radial dipole matrix elements, J. Phys. B: Atom. Molec. Opt. Phys. 28 (23), p. 4963-4971 (1995); e-Print physics/9610018; PDF.
- B. Kaulakys and V. Gontis, Quantum anti-Zeno effect, Phys. Rev. A, 56 (2), p. 1131–1137 (1997); e-Print quant-ph/9708024; PDF.
- G. Hermann, B. Kaulakys, and G. Mahr, Rare-gas-induced broadening and shift of two-photon transitions to intermediate (n = 9-14) Rydberg states of atomic thallium, Eur. Phys. J. D 1 (2), p. 129-137 (1998); PDF.
- B. Kaulakys, D. Grauzhinis, and G. Vilutis, Modelling by maps of two-frequency microwave ionization of hydrogen atoms, Europhys. Lett. 43 (2), p. 123-128 (1998); e-Print physics/9808048; PDF.
- B. Kaulakys and T. Meškauskas, Modeling 1/f noise, Phys. Rev. E 58 (6), p. 7013-7019 (1998); e-Print adap-org/9812003; PDF.
- B. Kaulakys, F. Ivanauskas, and T. Meškauskas, Synchronization of chaotic systems driven by identical noise, Intern. J. Bifurcation and Chaos 9 (3), p. 533-539 (1999); e-Print chao-dyn/9906001; PDF.
- B. Kaulakys and G. Vilutis, Kepler map, Physica Scripta 59 (4), p. 251-256 (1999); e-Print chao-dyn/9904022; PDF.
- B. Kaulakys, Autoregressive model of 1/f noise, Phys. Lett. A 257 (1-2), p. 37-42 (1999); e-Print adap-org/9907008; PDF.
- B. Kaulakys and T. Meškauskas, Models for generation 1/f noise, Microelectronics Reliability 40 (11), p. 1781-1785 (2000); e-Print cond-mat/0303603; PDF.
- B. Kaulakys, On the intrinsic origin of 1/f noise, Microelectronics Reliability 40 (11), p. 1787-1790 (2000); e-Print cond-mat/0305067; PDF.
- J. Ruseckas and B. Kaulakys, Real measurements and the quantum Zeno effect, Phys. Rev.A 63 (6) 062103 (2001); e-Print quant-ph/0105138; PDF.
- J. Ruseckas and B. Kaulakys, Time problem in quantum mechanics and weak measurements, Phys. Lett. A 287 (5-6), p. 297-303 (2001); e-Print quant-ph/0202156; PDF.
- J. Ruseckas and B. Kaulakys, Weak measurement of arrival time, Phys. Rev. A 66 (5) 052106 (2002); e-Print quant-ph/0307006; PDF.
- J. Ruseckas and B. Kaulakys, General expression for the quantum Zeno and anti-Zeno effects, Phys. Rev. A 69 (3) 032104, 6 pp. (2004); e-Print quant-ph/0403123; PDF.
- B. Kaulakys and J. Ruseckas, Stochastic nonlinear differential equation generating 1/f noise, Phys. Rev. E (Rapid Communication) 70 (2) 020101 (2004); e-Print cond-mat/0408507; PDF.
- J. Ruseckas and B. Kaulakys, Time problem in quantum mechanics and its analysis by the concept of weak measurement, Lith. J. Phys. 44 (2), p. 161-182 (2004); e-Print quant-ph/0409006
- V. Gontis, B. Kaulakys, M. Alaburda, and J. Ruseckas, Evolution of complex systems and 1/f noise: from physics to financial markets, Solid State Phenomena 97-98, p. 65 (2004); PDF.
- V. Gontis and B. Kaulakys, Multiplicative point process as a model of trading activity, Physica A 343, p. 505 (2004); doi:10.1016/j.physa.2004.05.080; PDF.
- V. Gontis and B. Kaulakys, Modeling financial market by the multiplicative sequence of trades, Physica A 344 (1-2), p. 128 (2004); doi:10.1016/j.physa.2004.06.153; PDF.
- B. Kaulakys, V. Gontis, and M. Alaburda, Point process model of 1/f noise vs a sum of Lorentzians, Phys. Rev. E 71 (5) 051105 (2005); doi:10.1103/PhysRevE.71.051105; e-Print cond-mat/0504025); PDF.
- V. Gontis, B. Kaulakys, and J. Ruseckas, Point process models of 1/f noise and Internet traffic, AIP Conf. Proc. 776 p. 144-149 (2005); doi:10.1063/1.1985385; e-Print cs.NI/0508131; PDF.
- T. Meškauskas and B. Kaulakys, 1/f noise in fractal quaternionic structures, AIP Conf. Proc. 780 p. 91-94 (2005); doi:10.1063/1.2036706; PDF.
- J. Ruseckas and B. Kaulakys, Quantum trajectory method for the quantum Zeno and anti-Zeno effects, Phys. Rev. A 73 p. 052101 (2006); doi:10.1103/PhysRevA.73.052101; PDF.
- B. Kaulakys, J. Ruseckas, V. Gontis and M. Alaburda, Nonlinear stochastic models of 1/f noise and power-law distributions, Physica A 365 (1), pp. 217-221 (2006); doi:10.1016/j.physa.2006.01.017; PDF.
- B. Kaulakys, M. Alaburda and V. Gontis, Long-range stochastic point processes with the power-law statistics, Prague Stochastics 2006, Proc. Prague Conf., 21-25 August 2006, Ed. M. Huskova and M. Janzura, Matfyzpress, Charles University in Prague, pp. 364-373 (2006); PDF.
- V. Gontis and B. Kaulakys, Long-range memory model of trading activity and volatility, J. Stat. Mech. (10) P10016 (2006); doi:10.1088/1742-5468/2006/10/P10016; PDF.
- B. Kaulakys, M. Alaburda, V. Gontis and T. Meškauskas, Multifractality of the multiplicative autoregressive point processes, In Complexus Mundi: Emergent Patterns in Nature, Ed. M. M. Novak, World Scientific, Singapore, pp.277-286 (2006); PDF.
- V. Gontis and B. Kaulakys, Modeling long-range memory trading activity by stochastic differential equations, Physica A 382 (1), p. 114 (2007); doi:10.1016/j.physa.2007.02.012; PDF.
- B. Kaulakys, M. Alaburda, V. Gontis, T. Meskauskas and J. Ruseckas, Modeling of flows with the power-law spectral densities and power-law distributions of flow's intensities, Traffic and Granular Flow'05 Proc. Intern. Conf., Berlin, 10-12 October 2005, Editors: A. Schadschneider, T. Poschel, R. Kuhne, M. Schreckenberg and D. E. Wolf, Springer-Verlag, Berlin, p. 603-611 (2007); physics/0512068.
- B. Kaulakys, M. Alaburda and J. Ruseckas, Modeling Non-Gaussian 1/f noise by the stochastic differential equations, AIP Conf. Proc. 922 (1), p. 439-442 (2007); doi:10.1063/1.2759716; PDF.
- B. Kaulakys, M. Alaburda and V. Gontis, Point Processes Modeling of time series exhibiting power-law statistics, AIP Conf. Proc. 922 (1), p. 535-538 (2007); doi:10.1063/1.2759736; PDF.
- V. Gontis, B. Kaulakys, and J. Ruseckas, Trading activity as driven Poisson process: Comparison with empirical data, Physica A 387 (15), p. 3891 (2008); doi:10.1016/j.physa.2008.02.078; PDF.
- B. Kaulakys and M. Alaburda, Modeling scaled processes and 1/fβ noise using nonlinear stochastic differential equations, J. Stat. Mech. P02051 (2009); doi:10.1088/1742-5468/2009/02/P02051; PDF.
- B. Kaulakys, M. Alaburda, V. Gontis, and J. Ruseckas, Modeling long-memory processes by stochastic difference equations and superstatistical approach, Brazilian Journal of Physics 39 (2A), p. 453-456 (2009); PDF.
- B. Kaulakys, M. Alaburda and V. Gontis, Modeling scaled processes and clustering of events by the nonlinear stochastic differential equations, ICNF 2009, AIP Conf. Proc. 1129, p. 13-16 (2009); PDF; doi:10.1063/1.3140414.
- V. Gontis, B. Kaulakys and J. Ruseckas, Nonlinear stochastic differential equation as the background of financial fluctuations, ICNF 2009, AIP Conf. Proc. 1129, p. 563-566 (2009); PDF; doi:10.1063/1.3140536.
- J. Ruseckas and B. Kaulakys, 1/f noise from nonlinear stochastic differential equations, Phys. Rev. E 81 031105 (2010); doi:10.1103/PhysRevE.81.031105; PDF.
- M. Alaburda and B. Kaulakys, Simulation of bursting, rare and extreme events by nonlinear stochastic differential equations, Dynamics of Socio-Economic Systems 2 (2), p. 175–182 (2010); PDF.
- B. Kaulakys and J. Ruseckas, Solutions of nonlinear stochastic differential equations with 1/f noise power spectrum, IEEE Conferences: Noise and Fluctuations (ICNF), 2011 21st International Conference on, p. 192-195 (2011); doi:10.1109/ICNF.2011.5994297; PDF.
- B. Kaulakys and M. Alaburda, Modeling the inverse cubic distributions by nonlinear stochastic differential equations, IEEE Conferences: Noise and Fluctuations (ICNF), 2011 21st International Conference on, p. 499-502 (2011); doi:10.1109/ICNF.2011.5994380; PDF.
- J. Ruseckas and B. Kaulakys, Tsallis distributions and 1/f noise from nonlinear stochastic differential equations, Phys. Rev. E 84 051125 (2011); doi:10.1103/PhysRevE.84.051125; PDF.
- J. Ruseckas, B. Kaulakys and V. Gontis, Herding model and 1/f noise, EPL 96 60007 (2011); doi:10.1209/0295-5075/96/60007; PDF.
- J. Ruseckas, V. Gontis and B. Kaulakys, Nonextensive statistical mechanics distributions and dynamics of financial observables from the nonlinear stochastic differential equations, Advances in Complex Systems 15 (1) 1250073 (2012); doi:10.1142/S0219525912500737; PDF.
- J. Ruseckas and B. Kaulakys, Intermittency in relation with 1/f noise and stochastic differential equations, Chaos 23 023102 (2013); doi:10.1063/1.4802429; PDF.
- J. Ruseckas and B. Kaulakys, Scaling properties of signals as origin
of 1/f noise, J. Stat. Mech. 6 P06005 (2014); doi:10.1088/1742-5468/2014/06/P06005; PDF.
- B. Kaulakys, M. Alaburda and J. Ruseckas, 1/f noise from the nonlinear transformations of the variables, Mod. Phys. Lett. B 29 1550223 (2015); doi: 10.1142/S0217984915502231; PDF.
- J. Ruseckas, R. Kazakevičius and B. Kaulakys, Coupled nonlinear stochastic differential equations generating arbitrary distributed observable with 1/f noise, J. Stat. Mech. 2016 043209 (2016); doi: 10.1088/1742-5468/2016/04/043209; PDF.
- J. Ruseckas, R. Kazakevičius and B. Kaulakys, 1/f noise from point process and time-subordinated Lagevin equations, J. Stat. Mech. 2016 054022 (2016); doi: 10.1088/1742-5468/2016/05/054022; PDF.
- B. Kaulakys, M. Alaburda and J. Ruseckas, Modeling of long-range memory processes with inverse cubic distributions by the nonlinear stochastic differential equations, J. Stat. Mech. 2016 054035 (2016); doi: 10.1088/1742-5468/2016/05/054035; PDF.
|